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Abstract

The plane problem about surface loading of an elastic layer perfectly bonded to an elastically dissimilar half-plane is
considered. The fundamental solutions for concentrated forces acting perpendicular and parallel to the layer surface are
obtained. The stress and displacement fields in the coating layer and the substrate due to these concentrated forces are
found. On the basis of these expressions, the fundamental integral equations are obtained which describe the frictional
contact between an elastic body and a coated substrate. From the fundamental integral equations, a series of integral
equations for special cases are deduced corresponding to practical contact situations. Finally, the numerical results for a
typical example are given to demonstrate the validity of the fundamental equations and numerical procedures given in
this paper.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Great many situations in engineering require the transmission of loads through contacts between dif-
ferent components and parts of assemblies. Often the contacting surfaces must be allowed to undergo
relative sliding with respect to each other, for example, in ball or journal bearing assemblies, or in the
dovetail connection between the fan blades and root disks in aero-engines. In order to impart superior
strength and durability to the assembly the contacting surfaces are often coated with materials possessing
mechanical properties that are distinctly different from those of the substrate, e.g. much increased hardness
and stiffness, or lower stiffness and low coefficient of friction.

Contact between coated bodies gives rise to complex stress states in the coating layers and substrates,
affected by the elastic properties of the coating, substrate and indenter, the coefficient of friction, the type of
contact (complete or incomplete), and the extent of contact in comparison with the coating thickness.
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Two main approaches to this class of problems have been used. One is the finite element method (FEM),
employed by many researchers (Ihara et al., 1986a,b; Komovopoulus, 1988; Tian and Saka, 1991; Anderson
and Collins, 1995; Lovell, 1998; Aslantas and Tasgetiren, 2002; and others). The other method is the
boundary integral method (BIM), also widely investigated and used for this type of problems (e.g. Wu and
Chiu, 1967; Bentall and Johnson, 1986; Gupta and Walowit, 1974; King and O’Sullivian, 1987; Jaffar and
Savage, 1988; Oliveira and Bower, 1996; Elsharkawy, 1999; Porter and Hills, 2002; and others). FEM can
be effectively used for arbitrary complex geometry and complex material constitutive laws, but it requires
some significant effort in pre- and post-processing of the data. BIM is more convenient and straightforward
than FEM when used for simplified contact configurations and linear elastic material response. For
material selection and preliminary design BIM may be much more efficient than FEM. However, a com-
plete systemic framework is still lacking for calculating contact tractions and stress fields around a contact
between an elastic punch and a coated surface, in a way that is perhaps similar to contact mechanics of
uncoated systems (Johnson, 1985; Hills et al., 1993), although some special simplified models have been
investigated (Nowell and Hills, 1988).

The aim of the present study is to develop a general framework for calculating contact tractions and
stress fields around a contact between an elastic punch and a coated surface. Various contact models (i.c.
different combinations of coating, substrate, and indenter, as well as all kinds of frictional contact models,
such as full stick, partial slip, and full slip models) can be derived with some additional assumptions in the
BIM framework.

The solution procedure is constructed in the following steps. Firstly, fundamental solutions for con-
centrated normal and tangential forces acting at the surface of a coated half-plane are determined in
Section 2. Solutions for the Airy stress functions for the two cases are obtained, and are used to derive
the expressions for the elastic fields everywhere in the coating and substrate. Of particular interest in
contact mechanics problems are the values at the coating surface, i.e. the surface tractions and dis-
placements. The stress and displacement fields show singular behaviour when the point at which they are
evaluated approaches the loading point. In Section 3, on the basis of the fundamental solutions for
concentrated forces we develop fundamental singular integral equation formulation for the unknown
traction distributions, for the general case of frictional contact between an elastic punch and a coated
substrate. Subsequently in Section 4, some degenerate fundamental integral equations corresponding to
typical contacts of coated system are derived, which are quite often encountered in practical calculations.
Finally, full displacement and stress fields of coated system due to surface tractions are presented in
simple forms in Section 5.

2. Fundamental solutions

The contact problem of an elastic coating of uniform thickness perfectly bonded to an underlying dis-
similar elastic half-plane is investigated on the basis of the two-dimensional theory of elasticity.

Under the conditions of plane strain, the stress components o, 7,,, and o,, can be expressed as

¢ 29 i @)
O = =, Oy = =—, Oy = — . .
T oy? P o2 o Ox0y

Here ¢ is the Airy stress function. It is usually required that function ¢ be chosen so as to satisfy only one
compatibility equation relating the in-plane strain components &,,, &,,, and &,,. This leads to the requirement
that ¢ be biharmonic, V4¢ = 0. Solution of the equation V*¢ = 0 can be chosen in the form

¢ = [(A) + Ary)e™ + (43 + Asy)e"](c) cos wx + ¢, sin wx), (2.2)

where 4, A», A3, A4, ¢1, ¢, are parameters which are only related to parameter w.
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Introduce two harmonic functions Q; and Q,, where Q; satisfies
01 =V =0,+o0, (2.3)
and Q, is the conjugate harmonic of Q, i.e. is related to Q; by the Cauchy—Riemann equations as follows:

00 _00, %0 _ 090

ox oy’ dy (24)

The integral of the analytic function f(z) = Q; 4 10, is another analytic function, (z),
. 1
0 = +ig =, [ 1@z (23)

where ¢ is as yet an arbitrary constant, z = x + iy and i = y/(—1). Functions (qi,¢,) are also conjugate
harmonic functions satisfying the Cauchy-Riemann equations,

qu 6q1 _

ax +1 a - (Ql + IQZ) (26)
From Eq. (2.3) and the previous equation one can solve

¢ = xq1 +yq2 + po, (2.7)

where py is arbitrary function which satisfies V2p, = 0, provided ¢ = 4
Plane strain elastic equations

1+

Exx = T [GXX - V(Gxx + O-W)]’
1+v

&y = E [Jy — V(0w + G)y)]v (2:8)
1+v

ty =~ On

can be expressed in terms of ¢, g; and ¢, by virtue of Egs. (2.1), (2.3), (2.5) and (2.6) as
2
@1—&—\}[4(1\))6611 0 q’)}

ox E ox  ox?
) (2.9)
o 1+4v dq, 0°¢
R N Y8 TS S i
d E {( v)@y ayz]
Integration of Eq. (2.9) gives
l+v 0
= e - 2]+ o,
(2.10)
+v 0
=2 a1 = v~ 2] 4t
where f1(y), f>(x) are arbitrary functions of integration. These can be found from
E Ou Ov 0% dfi  dfs
o Ou ovl _ & 2.11
Oy 2(1—}—\1)[6)/ @x] 6x6y+2<dy+dx> 211

in comparison with the third equation in Eq. (2.1). Obviously, it is necessary that (‘% + %) =0, and hence

fi(y), fo(x) are linear in their variables. Therefore they represent rigid-body rotation and can often be
discarded in Eq. (2.10).
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The plane strain general solution is written as

u:1+v{4(l—v)q1—%],

E Ox
1+v 0
v= [4(1 —V)(]2—a—f], (2.12)
R0 R0 %
“’“"_a—yl’ O = o2 ny__ﬁxay'

2.1. Fundamental solution for a concentrated load normal to the surface

The problem has been treated approximately by Gupta and Walowit (1974) when they investigated the
frictionless contact problem by using Fourier transform method. Here, in order to provide a basis for several
fundamental solutions of this problem in the following derivation, we develop full solutions in some detail.
In view of the symmetry of the normal load (Fig. 1) and the requirement that the substrate be stress-free at
large distances from the loading point, Airy stress functions for coating and substrate can be written as

P = / (41 + 42y)e™ + (A3 + Asy)e™] cos wxdw, (2.13)
0

o = / (s + Aey)e™ cos wxdw, (2.14)
0

where 4; are generally functions, as yet to be determined, of the dummy Fourier transform variable w;
superscripts I and II refer to the coating and substrate, respectively.
Using the procedure described in the previous section, the expressions for the auxiliary functions ¢, and
¢» are obtained as follows:
1 o0
g, = 3 / (A4€™ — Aye™) sin wxdw,
0 (2.15)

1 e e]
7= 3 / (A4e™ + A7) cos wx dw,
0

Coating
Eivi o

Fig. 1. Coating—substrate system subject to concentrated loads at origin.
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1 [~ .
¢l =— 3 Age™ sin wxdw,
1~ (2.16)
g = 3 / Age™™ cos wxdw.
0

Substituting Eqs. (2.13)—(2.16) into Eq. (2.12), the general solution for the elastic fields in the coating and
substrate is obtained.
The unknown functions 4;(w) are now determined from the boundary conditions at the coating surface

= —5()&7),

2.17)
D _ (
avcy =0 (y - 0)
and the continuity conditions of stresses and displacements along the interface
I I
o
Oy = O- (y = h)a
4 2.18
Ul — uII7 ( )
vt ="

Functions 4,(w) contain the coating thickness # as a parameter, and also depend on the elastic bi-
material constants for the layer and substrate, given by B;=4(1+v)(1—v)/E;, C=C —C,,
C; = (1 +v,)/E;, where 1 refers to the coating and 2 refers to the substrate (i = 1,2). The expressions for
functions 4;(w) are given in Appendix A.

The stress and displacement fields for the coating and substrate can now be given in the following form:

' (x,y) = u™ -1 /x e’WyDNIMdW7
2 w
dNI(x y) = — N %/OC —wDNI cos dew,
sy (%, ¥) = 0 / e (AN 4 ADwy) e (4Y +Awa)] cos wxdw, (2.19)

Ny = = [ e (1 wpd — (Y — AYe™) 4 AY e (1 + wy)] sinxdw,

s (x,y) = ol = e [(AY 4+ A ) + A5 (wy — 2) + A} (2 4+ wy)] cos wxdw,

e
/
where

DY = —AY By +24YCy + 245 Cywy + € (A} By + 245 C) + 245 Cywy),

D' = AYBy +247Cy + 245 Ci(wy — 1) + ™[4} By — 247 Cy — 24} C (wy + 1)].

A xy) = = % /0 e (= AR+ 24YC 24 Cony) S gy,

M (x,y) =N = % /OOC e [21415‘1(32 + AN(B, + 2C (wy — 1))] COS WX dw,

slz\lzn (x,y) = JEH _ /OOO e*“’-V(AIS\’ +A2‘Iwy) coswxdw, (2.20)
Sll\lzu(x’y) - O-’I‘\L“ = ) e [ASN +A6N(Wy - 1)] sin wx dx,

0
s () = oyt = / e [A5 + 45 (wy — 2)] coswxdw.
0

Here, superscript N refers to normal load. Expressions for 4N can be found in Appendix A.
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2.2. Fundamental solutions of a concentrated load tangential to the half-plane

Similarly to the argument of the previous section, in view of the anti-symmetry of the tangential load (see
Fig. 1) and the far-field stress-free condition of substrate, Airy stress functions for the coating and substrate
can be sought in the form:

F'= / [(4) + Aoy)e™ + (45 + A4y)e™”] sinwx dw, (2.21)
0
F' = / (45 + Agy)e™ sinwx dw, (2.22)
0
where 4; are functions of w to be determined. Using the procedure of Section 2.1 gives
1 oo
‘111 =5 / (4dye™ — Aye") coswx dw,
) %% (2.23)
7 = 3 / (4re™ + Aye™) sinwxdw,
0
11 1 > —wy
9 =5 Age™ coswxdw,
| o (2.24)
gy == / Age™™ sin wxdw.
2 Jo

Substituting Egs. (2.21)—(2.24) into Eq. (2.12), the general solutions for the elastic fields of the coating
and substrate are obtained. The expressions are not written out explicitly here. From the boundary con-
ditions at the coating surface

» 2.25
a,, = —0(x) (y=0) 225)

and the continuity conditions of stresses and displacements along the interface equation (2.17), the coeffi-
cients 4; can be specified, as given in Appendix A.

Inserting Egs. (2.21)—(2.24) into Eq. (2.12), the stress—displacement fields of the coating and the substrate
are given. These so-called fundamental solutions for the stresses and displacements can be written as

L= COS Wx
dTI , — 0 _ _ - / efwyDTI d ’
L (y) =u 5 ), 1 2 ,
L= sin
d;“ (X7y) E UTI — / efwyD"zrl wx dw’
2 Jo
)=y = / [ (4T + ATwy) + € (4 + Afwy)] sinwxdw, (2.26)
’ 0

sh(x,y) = aIy' = —/ e " [Ay (1 —wy) — (4] — 45 &™) + 4, (1 +wy)] coswxdw,
0

s(xy) =0l = /0 e [(A] + A3 €™) + Ay (wy — 2) + 4, €”(2 + wy)] sin wxdw,

where

D' =20, (A] + AT e™™) — A7 (B — 2Cywy) + 4, €™ (B + 2Cywy),
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Dy (x,y) = 2C1(4] — 43€™) + 45 (B1 +2Ci (wy — 1)) + A3 €™ (B — 2Ci (wy + 1)),

COSwx
d(x,y) =™ =

/ e " (4§ By — 245 Cy — 245 Cowy) dw,
0

2

sin wx
dZT“(x,y) T

/ e " [2A§C2 + Ag(Bz +2C(wy — 1))] dw,
0

1
2
syt (x, ) = G_TWH = —/0 e (AT + Agwy) sin wxdw,

e ) = ol = [ e AT+ Aoy 1) osd

S”IFIII (x,y) = GEXII _ /0 e [AE + Ag(wy — 2)] sin wxdw,

2843

(2.27)

here superscript T refers to the tangential load. The expressions for AT can be found in Appendix A.
If the coating material is identical to that of the substrate, or coating thickness approaches infinity,
solutions (2.19), (2.21), (2.26) and (2.27) reduce to the classical Flamant’s solutions (Hills et al., 1993;

Gladwell, 1980).

3. Formulation of singular integral equations of contact of coating—substrate system by fundamental solutions

(influence functions)

We now seek Green’s functions (GF) for the contact mechanics of coated systems, which provide

building blocks used to construct other solutions.
3.1. Influence functions

Putting y = 0 in Eq. (2.19) the coating surface displacements are obtained as

sin wx

1 o0
N 3 /0 [,AIZ"B1 + ZA?ICl +A4NBl + 2A§IC1] dw,
1 o0
L / [AYBy +24YCy — 24N Cy + AYBy — 24YCy = 24YC] " dw
0

2

and their derivatives with respect to x as

L [ ane a2+ 200 cosnan,

(A Y N N N N N N :

EZE/O [ —AYBy — 247 Cy + 245 Cy — A} By + 245 C) + 24} C; ] sin wxdw.
By letting

% [247Cy +245C — AYBy + A} B1] = Gi{1 + R},

1

3 245 Cy — 247 Cy + 245 Cy 4 245 C — AYBy — A} B|] = Go{1 + R.},
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where G, = 2<£;1), G = “*“‘E)(l%’l), Eq. (3.2) can be rewritten as
ouNt o0 o
o G / [1 4 R (hw)]coswxdw = G, [né(x) + / R (hw) cos wxdx] ,
X
avNI Ooo 1 00 ’ (34)
—= Gz/ [1 4+ Ry(hw)]sinwxdw = G, —+/ Ry(hw) sinwxdw|,
ax 0 X 0
where the relations
1 [ 1 <,
o(x) =— / cos wxdw, -= / sin wxdw (3.5)
T Jo X 0
are used, and
Ru(W)
R(W) = —1,
() R0

Ry(W)=Rin(W)+Rin(W),
R]]](W) = —(Bl — ch)(Bz + C)(B] — C) — (B] — 2C1)C(B] —Bz — C)674W,

Ripn(W) = e " {2(B, — 2B, — 2C\)(B) — C\)C| + 2C5(B\B, + 4B, Cy — 2B,C, — 4C}
— B1C, 4 2C1Cy) + 8C1C(By + C)IW*},

Rip(W) =2Gn{(B,+ C)(By — C) 4+ C(By — B, — C)e "
+e " [B1(B) — B, — 2C) + 2C(B, + C)(1 + 2W7%)] },

B] (B] — C)(Bz + C) — B](Bl — Bz — C)Ce’4W — 4B]C672W(Bz + C)W

k(W) = =1~ 2G,n{(Bi — C)(B, + C) + (Bi — B, — C)Ce " + e 2W[B> — B\ (B, + 2C) + 2C(B, + C)(1 + 2W?)]}

where W = wh.
Egs. (3.4) are Green’s functions, or influence functions due to the normal unity load.
Similarly, putting y = 0 in Eq. (2.26) one obtains the coating surface displacements as

COS wx

1 e e]
- / 26, (AT + A7) — ATB, + ATB,] dw,
0
. 3.6
n 1 (™ T T T T sin wx (3.6)
V=5 [2C1(A} — 43) + 47 (B) = 2C1) + 44 (B) —2C1)] dw
0
and their divertive with respect to x as
ou™ 1 [ T T T T .
=3 [2Ci(A] + A}) — A3 B, + Ay By ] sinwxdw,
0
(3.7)
w1
% = / [2C, (AT — AT) + (AT + A7) (B, — 2C))] cos wxdw.
0
As in the previous derivation, let
1
3 [ —A)Bi +24]Cy + A; B, 4+ 245 C,| = G5(1 + Ry),
(3.8)

1
3 [43B) +24]Cy — 24, Cy + A, B) — 245C) — 24, C,| = G4(1 + Ry),
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where G3 = G,, G4, = —G,. Then Eq. (3.7) is transformed into

TI 00 00

ag— = G; / [1 4+ R3(hw)] sinwxdw = G5 {1 + / R3(hw) sin wxdw] )

oo o SRR (3.9)

T G4/ [1 4+ Ry(hw)] coswxdw = G4 [né(x) + / R4(hw) cos wxdw],

0 0

where

Re() = —1 — Bi(B) — C)(B:+C)—B,(By —B, — C)Ce™ +4B,Ce " (B, + CO)W

3 o 2G3TL’{(B| —C)(Bz-i—C)—F(Bl —Bz—C)C674W+672W[B%—Bl(Bz+2C)+2C(Bz+C)(1+2W2)}}
and
B Ry (W)
R4(W) n ! + 27'EG4R42(W) ’

Ryy(W) = Rayy (W) + Raa (W),

Ry (W) = (By —2C1)(B; — C)(B, + C) + (B1 —2C1)(By — B, — C)Ce™,

Ry (W) = =2 " {B{C\ — B[B>(C; + C) + C(2C, + C)] + 2C,C(B> + C)(1 + 2W?) },
Rix(W) = Rini (W) + Ram (W),

Ry (W)= (B, —C)(B,+C)+ (B, — B, — C)Ce™*",

R422(W) = 672W [B% — B](Bz + 2C) + ZC(BZ + C)(l + ZWz)] .
Egs. (3.9) are Green’s functions or influence functions due to the tangential unity load. It must be noted
that limy_ . R,(W) =0 (i = 1-4).

3.2. Formulation of fundamental integral equations for contact of coated system

Using Egs. (3.4) and (3.9), the displacement derivatives of coating surface loaded by a distribution of
frictions can be written by the Green’s function method as follows:

6ual)(cx):/6u g;_t)p(t)dt—&—/éu (a)ct—t)q(t)dt7

vy (x) oM (x — 1) M (x —1)
——= | ———=p(t)d¢ ———q(¢)dt
o / o P0)dr+ / o 4dr,
where p(¢) and ¢(¢) are, respectively, unknown continuous normal and tangential tractions, and u;, v, are
normal and tangential displacements of coating surface due to combination loads of p(¢) and ¢(¢), and ¢ is

the dummy integration variable whose range of variation is the contact zone.
Inserting (3.4) and (3.9) into (3.10) leads to

Ou (x) /G1 —né(x — )+ /OOo Ry (hw) cos w(x — 1) dX]p(f) dr

(3.10)

Ox

+/G3 xl_t—i—/oxR;(hw) sinw(x—t)dw}q(t)dt7

vy (x) _ / Gl L ¢ /0 " Ro(lw) sinwix — 1) dw}p(i) de

(3.11)
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or

Y Gpl) + G [ Lais [ { | matim)coswix— dt}p@ d

t
+ / Gz[ / " Ry (hw) sinw(x — 1) dw]q(t) dr,
Ov (x) )

== Gz/&dt ~ Gimg(x) + G2/ UOOO Ro(w) sinw(x — 1) dw]p(t) y (3.12)

x—t
e / [ /0 " Ru(w) cosw(x—t)dw]q(t)dt

by virtue of Gz = G,, G, = —Gj.

Now, let us turn to the surface deformation of an elastic indenter. Consider the uncoated case first,
which can be easily obtained by setting the materials of coating and substrate to be identical in (3.12) and
denoting Poisson’s ratio and Young’s modulus of the indenter by v3 and E3. Consequently, the deformation
of an elastic indenter can be presented as

6u63)(cx) = Gsmp(x) + G / %dt,
ousx) _ [ pl0) G
é—x = Gs /):dt - GSTCCI(X),

2_
where G5 = ng%fl), Go = 2(:2-1)

Eyn °
In the coordinates of coatirfg and substrate as shown in Fig. 2, Eq. (3.13) in the global coordinates
should be rewritten as

Ous (x) = Gsnp(x) — Gé/ﬂ_t)dt,
. 6’(“ ) 9 -t (3.14)
Uéxx = —Gg /%dt — Gan(x).

—= '\ ==
P 2a

R \ Coating Ejvq
Indenter Eqvs Thickness=h

Q
P

Fig. 2. Contact of two gently curved bodies.
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Following Hertz, it will be assumed that the contact width is small compared with the radii of the
curvature of the contacting bodies. Thus, each may be replaced by a half-plane, and the value of the relative
displacements g, = u; — u3, g, = v; — v3 can be expressed as

@ggij(cx) = (G| — Gs)np(x) + (G + Ge) /%dt + / G {/000 Ry (hw)cosw(x —t) dt}p(t) dr

+ / Gz[ / " Ry(w) sinw(x—t)dw]q(t)dt,
0g,(x) " (0 . (319)
ggx = (G, + Gs) /)%dt —(G1 — Gs)rng(x) + Gz/ [/0 Ry (hw) sinw(x — ¢) dw}p(t) dr

_q / { / " Ra(w) cos w(x — 1) dw}q(t) dr,

which also can be re-expressed in a standard form as
% aggix) — Bp() +% / %dt + 51% / { /O " Ry () coswx — 1) | ()
+ [32% / { / Ry (hw) sin w(x — 1) dw]q(t) dt,
i 0 N ] (3.16)

}4 agg)(c ) _ % /%dt — Bq(x) + ﬁz% / [/0 Ry(hw) sinw(x — ¢) dw_p(t) de

—ﬁI%/ {/Ox&(hw) cosw(x —t) dw]q(l)dt,

where
L2011, 2031 g (Lt w)(2v = D/E = (Lt v) (20 = 1)/Es
El E3 ’ 2(\)% — 1)/E1 -+ 2(\% — l)/E3 ’
(I 4v)2v 1) 120 1)
ﬂl _Z E1 ) /32 _Z 1E1 .

Egs. (3.16) are the fundamental equations for the contact between an elastic indenter and a coated system. It is
understood that the integrals are carried out over the entire contact zone in each case. Clearly, the normal
traction and tangential traction are coupled in Eq. (3.16). Only if all materials of coating, substrate and in-
denter are identical, then Eq. (3.16) can be decoupled. This is different from the contact situation in the
uncoated problem. In the uncoated case, when the substrate material is identical to the indenter material, the
contact equations are decoupled. In addition, we ensure equilibrium with the external forces P, Q by requiring

P:/p(t)dt, (3.17)
Q:/q(t)dt- (3.18)

4. Special cases of contact of coating—substrate system

From the fundamental equations (3.16), a series of special cases of the governing equations can be
obtained by selecting appropriate material parameters. Below, we present some frequently encountered
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cases. Some of them correspond to practical contact situations studied by other models and methods, such
as the FEM (Tian and Saka, 1991; Anderson and Collins, 1995), BIM (Gupta and Walowit, 1974; Els-
harkawy, 1999) and a hybrid method (Bentall and Johnson, 1986; Nowell and Hills, 1988).

4.1. Rigid indenter

When the indenter is rigid, Eq. (3.16) can be written into the form

%aggiX) = fp(x) + / _tdt—i-ﬁ/ {/ 1 (hw) cosw(x—t)dt} (¢)de

+l/ [/0 R3(hw)51nw(x—t)dw] (r)dz,

TR LIPS ——
- g [/0% R4(hw) cos w(x — ¢) dw] q(t)dt

v v
with 4 =2 5 1), p= 21( 2 ' . Here, it should be pointed out that the conditions of validity of Eq. (4.1) are less
strict than those for Eq. (3.16). the radius of curvature of the coating surface must be much larger than the
contact width, but there is no restriction for curvature of the rigid indenter. This case can be often used
when indenter is much stiffer than coating. Numerical solution of Eq. (4.1), particularly when partial slip
occurs, requires introducing some assumptions, e.g. Amontons (or Coulomb) friction law, or the Goodman

assumption, similarly to the uncoated case (Hills et al., 1993).
4.2. Fully sliding frictional case

Considering the relative displacement of the contact surfaces in tangential direction, contact problems
can be classified into three cases:

e The full stick problem: once a point at the surface of indenter comes into contact with a corresponding
coating surface point, their relative displacement in the tangential direction is fixed at a constant value
during subsequent increase of the contact load.

e Partial slip: during increase of external loading at some points on the contact surface shear tractions
reach a limiting value, and slip (change in the relative displacement of contacting points) takes place.

e Full slip: the entire contact surface is under sliding conditions.

In practice, full stick seldom happens in the case of incomplete contacts. Partial slip problem presents a
numerically complex problem even for the uncoated case (Nowell and Hills, 1988), and is even more dif-
ficult in the coated case. In this paper we consider the case of full slip of a frictional contact. We assume that
the relation ¢(¢) = fp(¢) holds everywhere, where f is the friction coefficient. Eq. (3.16) then can be reduced
to a single Fredholm integral equation of the second kind as

ﬁaggf”:l/f“ —fBp(x) + P / [/ Ry(hw) sinw(x — £)dw | p(t) dt

T 0

_Ih / [/OOC Ry(hw) cosw(x — t) dw]p(t) de. (42)

I
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Moreover, if the indenter is rigid, Eq. (4.2) can be simplified to
1 6gy( )
- 4.
1 o —Bfp(x) + / dt+ /kxt (4.3)
where
k(x, 1) = / [Ra () sin w(x — £) — £ BRu(w) cos w(x — £)] dw.
0

A set of powerful methods have been proposed to solve this kind of singular Fredholm integral (Erdogan
et al., 1973; Ma and Korsunsky, 2002).

4.3. Frictionless case

If the friction coefficient is equal to zero, Eq. (4.2) reduces to the Fredholm integral equation of the first
kind

10g,(x) 1 [ p(t) 1 *© .
Furthermore, if the indenter is rigid, Eq. (4.4) degenerates to
1a&wy_1/pm 1/ /m .
il B tdt + - i Ry(hw) sinw(x — ¢)dw|p(¢)dz. (4.5)

In the literature, frictionless cases have been investigated by many authors (Gupta and Walowit, 1974;
and others).

4.4. Thin coating

When the coating material is identical to substrate material, or the thickness of coating # — oo, Egs.
(3.16) reduce to the equations for the uncoated system obtained by Hills et al. (1993) (Eqgs. (2.17) and
(2.22)).

1 dg, 1 t
“):@m+f/“)m
A ox x—t (4.6)
1%7_1/ G pate) |
A & = —t
-~ ( -1 < (L4v1) (v = 1)/Ey ~(14v3) 2v3 1) /E
where 4 = + > /3 =— 2(\%71)/E:+2(‘ 31)/51 E

Sometlmes, attentlon is focused on the larger deformation along the coating. It is possible to assume
approximately that both substrate and indenter are rigid. The full slip contact equation can be reduced to
the Fredholm singular integral of the second kind:

%agé%)(cx):%/f(%)dt—ﬁfq(x)—i-%/ onzzz(hw)smw(x—t)dw o

fﬁ/ [/ Ry(hw) cosw(x—t)dW] (¢)dt, (4.7)

2(v3-1) (1- 2\1

P2l b= 2(1 " , and

where 4 =
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1_ Bl(Bl — C])C](l — 674W) — 4B]C%672WW
2G27T{(Bl — Cl)Cl(l +e‘4W) + C_ZW[B% — 2CIB] + 2Cf(1 + 2VV2)]}7

Roy(W) = —

(B1 —2C)(By — C)C (1 + ") — 22V [BIC, — 3C}B) 4 2C7 (1 + 2]
27TG4{(Bl — Cl)Cl(l + C_4W) + C_ZW[B% — 2C131 + 2C12(1 + 2W2)]}

Ry(W) =—1+

5. Stress and displacement fields in coating and substrate

Unknown traction distributions p(x) and ¢(x) must be solved by some suitable numerical methods for
the inversion of singular integral equations (e.g., Erdogan et al., 1973; Ma and Korsunsky, 2002). If p(x)
and ¢(x) in Sections 3 and 4 are found, then stress and displacement fields in the coating and substrate
obtain respectively as follows:

Coating:

d(x.y) = / [ (x— 6, 9)p(e) +d™(x — 1,p)g(0)]db,

(5.1)
s3;(x,) = / [SE}” (x = £,)p(t) + 53 (x — t,y)q(t)} dr.
Substrate:
d'x3) = [ 46— 13)plo) + M (x— e )a(0]
(5.2)

) = [ [0 = 60p0) + 511G = 1)a(0)]dr

i

displacement and stress kernel functions that can be found in Egs. (2.19), (2.21), (2.26) and (2.27).

where &' (x, y), dM (x, ), s§' (x, ), sy (x, ), 4 (x,p), &M (x, ), s} (x, ) and s/ (x, y) are, respectively, the

6. Numerical example

Consider the problem of a rigid cylindrical punch, sliding on a coated elastic half-plane as shown in Fig.
2. The problem can be expressed by Eq. (4.3) and solved using the Erdogan method (Erdogan et al., 1973).
Without wishing to discuss the details of the numerical implementation we focus here on the variation of
the traction distribution along the coating surface due to the introduction of the coating and further with
the change in the friction coefficient.

The elastic parameters of the softer coating and the stiffer substrate are as follows:

Indenter: rigid, indenter radius: R = 5.0 x 10~° m.

Substrate: E, = 1.15 x 10'! Pa, v, = 0.33.

Coating: E; = E,/2, vi = 0.33, coating thickness: # =2 x 107> m.
Normal load: P = 15,000 N/m.

Fig. 3 shows the traction profiles along the contact. Further numerical results for the eccentricity and
extent of contact are given in Table 1.
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Fig. 3. Normal traction vs. friction coefficient for a rigid Hertzian indenter sliding over a coated half-plane under normal load P = 15
kN/m.

Table 1
Variation of contact parameters with the friction coefficient for a rigid Hertzian indenter sliding over a coated half-plane under normal
load P = 15 kN/m

Friction coefficient, f Contact half width, a (um) Eccentricity parameter, e (um) Thickness parameter (/a)
Case 1: f = 0.0 (uncoated) 27.20 0.0 0.0
Case 2: f=0.0 33.10 0.0 0.6
Case 3: f =0.2 33.13 2.6 0.6
Case 4: f =0.5 33.26 6.6 0.6
Case 5: f =0.8 33.49 10.6 0.6

Numerical results for the pressure distribution for the uncoated case are in perfect agreement with the
Hertzian formula for the semi width of a two-dimensional contact between a rigid cylindrical punch and an
elastic half-plane:

_[4PR(1 —?)
a=\— (6.1)

In the case of uncoated substrate the above formula gives the value of 27.20 um, as in Table 1. If, on the
other hand, a semi-infinite solid with the elastic properties of the coating were considered, the result would
be 38.47 pum. The numerical results obtained for the coated substrate are expected to lie between these two
extremes, as confirmed in Table 1.

Compared with the normal traction distribution of the Hertzian contact (i.e., uncoated, frictionless
contact, Case 1 in Fig. 3), the tractions for the coated contact are reduced due to the increased extent of the
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contact. With increasing coefficient of friction the contact semi-width increases, as does the eccentricity.
The phenomena associated with the change in the extent of contact are relatively mild in the Hertzian case.
However, they are likely to be much more significant in other cases, e.g. that of flat-and-rounded contacts,
where significant increase of the normal traction towards the edge of contact is observed. These effects will
be treated separately.

7. Concluding remarks

Fundamental solutions for the concentrated normal and tangential forces acting at the surface of a
coated half-plane have been obtained.

On the basis of the fundamental solutions for concentrated forces, singular integral equation formula-
tion has been developed for the unknown traction distributions, for the general case of frictional contact
between an elastic punch and a coated substrate. This is a general basic framework for the analysis of
contact of coated system.

Some special integral equation formulations have been derived corresponding to some typical cases of
contacts of coated systems, which are often encountered in practical situations.

Subsequently, full displacement and stress fields of coated system due to arbitrary surface tractions have
been derived by Green’s function method and presented in simple forms.

Finally, a typical example is considered and the numerical solution given to support the validity of the
fundamental equations deduced in this paper.

The conclusions obtained in this paper apply to the contact of a system coated by single layer. For the
contact of multi-coated system fundamental solutions can be re-derived using the general procedures given
in this paper.
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Appendix A

Al A; and Afv due to concentrated normal load

A7
Al = W
_ 2B\By+2(B; — By — C)C + e ™ [B} — BiB, — 2(B) — B, — C)C +4C(B; + C)hw(hw — 1)]
N 2naw?D ’
4= 4y (C=B)(B2+C) + (By+ C)e>™C(2hw — 1)
T wo awD ’
s = Ay _2(Bi— By — C)Ce ™™ + e 2 [B} — B\B, — 2(B) — B, — C)C + 4C(B, + C)hw(hw + 1)]

w2 2nw2D ’
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_AY  (Bi=By— CO)Ce ™ + ¢ C(By + C)(1 + 2hw)

A4 ’
w wwD
e A Bi[=Bi =By +2(Bi — B, = 2C)hw] + Bie ™[ — By + By + 4Chw(1 — hw)]
ST 2nw?D ’
y AN Bi(B; — C)+Bie ™ C(1 — 2hw)
6 — = )

w nwD

D= (BiBy+ (B, — B, — C)C(1 + ¢ *™) + ¢ > [B] — BB, — 2(B; — B, — C)C + 4C(B, + C)I*w’]).
A.2. A; and AY due to concentrated tangential load

. A"]F eiZhw[Bl (B] — B, — 2C) + 4C(Bz + C)hzwz]

A ="L=—
e 2aw?D ’
oA (C=B)B:+C)— (Bt C)e ™ C(1 + 2hw)
T wo mwD ’
AT _ e [Bi(Bi — By — 2C) + 4C(By + C)i*w]
PTwr 2aw?D ’
4, =4 _ C(B, — B, — C)e ™ 4 e (C(By + C)(1 — 2hw)
Tw mwD ’
AT Bi(By — By — 2C)(2hw — 1) + Bie ™[B) — B, — 2C + 4Ch*w?]
AS - _2 - 2 9
w 2nw?D
y AT Bi(By — C)+Bie ™ C(1 4 2hw)
6 = — = ,

w TwD

D= (BB, + (By — B, — C)C(1 + ¢ *") + ¢ *"[B] — BiB, — 2(B — B, — C)C + 4C(B, + C)*w?]).

References

Anderson, I.A., Collins, I.F., 1995. Plane strain stress distributions in discrete and blended coated solids under normal and sliding
contact. Wear 185, 23-33.

Aslantas, A., Tasgetiren, S., 2002. Debonding between coating and substrate due to rolling-sliding contact. Materials and Design 23,
571-576.

Bentall, R.H., Johnson, K.L., 1986. An elastic strip in plan rolling contact. International Journal of Mechanical Science 10, 637-663.

Elsharkawy, A.A., 1999. Effect of friction on subsurface stresses in sliding line contact of multilayered elastic solids. International
Journal of Solids and Structures 36, 3903-3915.

Erdogan, F., Gupta, G.D., Cook, T.S., 1973. Numerical solution of singular integral equation. In: Sih, G.C. (Ed.), Methods of
Analysis and Solutions of Crack Problems. Noordhoff, Groningen, pp. 368-425.

Gladwell, G.M.L., 1980. Contact Problems in the Classical Theory of Elasticity. Sijtoff and Noordhoff, Maryland, USA.

Gupta, P.K., Walowit, J.A., 1974. Contact stress between an elastics cylinder and a layered elastic solid. ASME Journal of Lubrication
Technology 96, 250-257.

Hills, D.A., Nowell, D., Sackfield, A., 1993. Mechanics of elastic contacts. Butterworths—Heinemann Ltd., Oxford.



2854 L.F. Ma, A.M. Korsunsky | International Journal of Solids and Structures 41 (2004) 2837-2854

Thara, T., Shaw, M.C., Bhushan, B., 1986a. A finite element analysis of contact stress and strain in an elastic film on a rigid substrate—
Part I: zero friction. Transactions of ASME, Journal of Tribology 108 (4), 527-533.

Thara, T., Shaw, M.C., Bhushan, B., 1986b. A finite element analysis of contact stress and strain in an elastic film on a rigid substrate—
Part II: with friction. Transactions of ASME, Journal of Tribology 108 (4), 534-539.

Jaffar, M.J., Savage, M.D., 1988. On the numerical solution of line contact problems involving bonded and unbonded strips. Journal of
Strain Analysis 23, 67-77.

Johnson, K.L., 1985. Contact Mechanics. Cambridge University Press, Cambridge.

King, R.B., O’Sullivian, T.C., 1987. Sliding contact stresses in a two-dimensional layered elastic half-space. International Journal of
Solids and Structures 23, 581-597.

Komovopoulus, K., 1988. Finite element analysis of a layered elastic solid in normal contact with a rigid substrate. Transactions of
ASME, Journal of Tribology 110, 477-485.

Lovell, M., 1998. Analysis of contact between transversely isotropic coated surface: development of stress and displacement
relationship using FEM. Wear 214, 165-174.

Ma, L.F., Korsunsky, A.M., 2002. On the use of interpolative quadratures for hypersingular integrals in fracture mechanics.
Proceedings of the Royal Society of London A 458, 2721-2733.

Nowell, D., Hills, D.A., 1988. Contact problems incorporating elastics layers. International Journal of Solids and Structures 24, 105-
115.

Oliveira, S.A.G., Bower, A.F., 1996. An analysis of fracture and delamination in thin coatings subjected to contact loading. Wear 198,
15-32.

Porter, M.I., Hills, D.A., 2002. Note on the complete contact between a flat rigid punch and an elastic layer attached to a dissimilar
substrate. International Journal of Mechanical Science 44, 509-520.

Tian, H., Saka, N., 1991. Finite element analysis of an elastic-plastic two-layer half-space: sliding contact. Wear 148, 262-285.

Wu, T.-S., Chiu, Y.P., 1967. On the contact problem of layered elastic bodies. Quarterly of Applied Mathematics XXV, 233-242.



	Fundamental formulation for frictional contact problems of coated systems
	Introduction
	Fundamental solutions
	Fundamental solution for a concentrated load normal to the surface
	Fundamental solutions of a concentrated load tangential to the half-plane

	Formulation of singular integral equations of contact of coating-substrate system by fundamental solutions (influence functions)
	Influence functions
	Formulation of fundamental integral equations for contact of coated system

	Special cases of contact of coating-substrate system
	Rigid indenter
	Fully sliding frictional case
	Frictionless case
	Thin coating

	Stress and displacement fields in coating and substrate
	Numerical example
	Concluding remarks
	Acknowledgements
	Appendix A
	Ai and AiN due to concentrated normal load
	Ai and AiN due to concentrated tangential load

	References


