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Abstract

The plane problem about surface loading of an elastic layer perfectly bonded to an elastically dissimilar half-plane is

considered. The fundamental solutions for concentrated forces acting perpendicular and parallel to the layer surface are

obtained. The stress and displacement fields in the coating layer and the substrate due to these concentrated forces are

found. On the basis of these expressions, the fundamental integral equations are obtained which describe the frictional

contact between an elastic body and a coated substrate. From the fundamental integral equations, a series of integral

equations for special cases are deduced corresponding to practical contact situations. Finally, the numerical results for a

typical example are given to demonstrate the validity of the fundamental equations and numerical procedures given in

this paper.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Great many situations in engineering require the transmission of loads through contacts between dif-

ferent components and parts of assemblies. Often the contacting surfaces must be allowed to undergo

relative sliding with respect to each other, for example, in ball or journal bearing assemblies, or in the

dovetail connection between the fan blades and root disks in aero-engines. In order to impart superior
strength and durability to the assembly the contacting surfaces are often coated with materials possessing

mechanical properties that are distinctly different from those of the substrate, e.g. much increased hardness

and stiffness, or lower stiffness and low coefficient of friction.

Contact between coated bodies gives rise to complex stress states in the coating layers and substrates,

affected by the elastic properties of the coating, substrate and indenter, the coefficient of friction, the type of

contact (complete or incomplete), and the extent of contact in comparison with the coating thickness.
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Two main approaches to this class of problems have been used. One is the finite element method (FEM),

employed by many researchers (Ihara et al., 1986a,b; Komovopoulus, 1988; Tian and Saka, 1991; Anderson

and Collins, 1995; Lovell, 1998; Aslantas and Tasgetiren, 2002; and others). The other method is the

boundary integral method (BIM), also widely investigated and used for this type of problems (e.g. Wu and
Chiu, 1967; Bentall and Johnson, 1986; Gupta and Walowit, 1974; King and O�Sullivian, 1987; Jaffar and
Savage, 1988; Oliveira and Bower, 1996; Elsharkawy, 1999; Porter and Hills, 2002; and others). FEM can

be effectively used for arbitrary complex geometry and complex material constitutive laws, but it requires

some significant effort in pre- and post-processing of the data. BIM is more convenient and straightforward

than FEM when used for simplified contact configurations and linear elastic material response. For

material selection and preliminary design BIM may be much more efficient than FEM. However, a com-

plete systemic framework is still lacking for calculating contact tractions and stress fields around a contact

between an elastic punch and a coated surface, in a way that is perhaps similar to contact mechanics of
uncoated systems (Johnson, 1985; Hills et al., 1993), although some special simplified models have been

investigated (Nowell and Hills, 1988).

The aim of the present study is to develop a general framework for calculating contact tractions and

stress fields around a contact between an elastic punch and a coated surface. Various contact models (i.e.

different combinations of coating, substrate, and indenter, as well as all kinds of frictional contact models,

such as full stick, partial slip, and full slip models) can be derived with some additional assumptions in the

BIM framework.

The solution procedure is constructed in the following steps. Firstly, fundamental solutions for con-
centrated normal and tangential forces acting at the surface of a coated half-plane are determined in

Section 2. Solutions for the Airy stress functions for the two cases are obtained, and are used to derive

the expressions for the elastic fields everywhere in the coating and substrate. Of particular interest in

contact mechanics problems are the values at the coating surface, i.e. the surface tractions and dis-

placements. The stress and displacement fields show singular behaviour when the point at which they are

evaluated approaches the loading point. In Section 3, on the basis of the fundamental solutions for

concentrated forces we develop fundamental singular integral equation formulation for the unknown

traction distributions, for the general case of frictional contact between an elastic punch and a coated
substrate. Subsequently in Section 4, some degenerate fundamental integral equations corresponding to

typical contacts of coated system are derived, which are quite often encountered in practical calculations.

Finally, full displacement and stress fields of coated system due to surface tractions are presented in

simple forms in Section 5.
2. Fundamental solutions

The contact problem of an elastic coating of uniform thickness perfectly bonded to an underlying dis-

similar elastic half-plane is investigated on the basis of the two-dimensional theory of elasticity.

Under the conditions of plane strain, the stress components rxx, ryy , and rxy can be expressed as
rxx ¼
o2/
oy2

; ryy ¼
o2/
ox2

; rxy ¼ � o2/
oxoy

: ð2:1Þ
Here / is the Airy stress function. It is usually required that function / be chosen so as to satisfy only one

compatibility equation relating the in-plane strain components exx, eyy , and exy . This leads to the requirement

that / be biharmonic, r4/ ¼ 0. Solution of the equation r4/ ¼ 0 can be chosen in the form
/ ¼ ½ðA1 þ A2yÞe�wy þ ðA3 þ A4yÞewy �ðc1 coswxþ c2 sinwxÞ; ð2:2Þ

where A1, A2, A3, A4, c1, c2 are parameters which are only related to parameter w.
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Introduce two harmonic functions Q1 and Q2, where Q1 satisfies
Q1 ¼ r2/ ¼ rxx þ ryy ð2:3Þ
and Q2 is the conjugate harmonic of Q1, i.e. is related to Q1 by the Cauchy–Riemann equations as follows:
oQ1

ox
¼ oQ2

oy
;

oQ1

oy
¼ � oQ2

ox
: ð2:4Þ
The integral of the analytic function f ðzÞ ¼ Q1 þ iQ2 is another analytic function, wðzÞ,
wðzÞ ¼ q1 þ iq2 ¼
1

c

Z
f ðzÞdz; ð2:5Þ
where c is as yet an arbitrary constant, z ¼ xþ iy and i ¼
ffiffiffiffiffiffiffiffiffiffi
ð�1Þ

p
. Functions ðq1; q2Þ are also conjugate

harmonic functions satisfying the Cauchy–Riemann equations,
oq1
ox

þ i
oq1
ox

¼ 1

c
ðQ1 þ iQ2Þ: ð2:6Þ
From Eq. (2.3) and the previous equation one can solve
/ ¼ xq1 þ yq2 þ p0; ð2:7Þ

where p0 is arbitrary function which satisfies r2p0 ¼ 0, provided c ¼ 4.

Plane strain elastic equations
exx ¼
1þ m
E

½rxx � mðrxx þ ryyÞ�;

eyy ¼
1þ m
E

½ry � mðrxx þ ryyÞ�;

exy ¼
1þ m
E

rxy

ð2:8Þ
can be expressed in terms of /, q1 and q2 by virtue of Eqs. (2.1), (2.3), (2.5) and (2.6) as
ou
ox

¼ 1þ m
E

4ð1
�

� mÞ oq1
ox

� o2/
ox2

�
;

ov
oy

¼ 1þ m
E

4ð1
�

� mÞ oq2
oy

� o2/
oy2

�
:

ð2:9Þ
Integration of Eq. (2.9) gives
u ¼ 1þ m
E

4ð1
�

� mÞq1 �
o/
ox

�
þ f1ðyÞ;

v ¼ 1þ m
E

4ð1
�

� mÞq2 �
o/
oy

�
þ f2ðxÞ;

ð2:10Þ
where f1ðyÞ, f2ðxÞ are arbitrary functions of integration. These can be found from
rxy ¼
E

2ð1þ mÞ
ou
oy

�
þ ov
ox

�
¼ � o2/

oxoy
þ 1

2

df1
dy

�
þ df2

dx

�
ð2:11Þ
in comparison with the third equation in Eq. (2.1). Obviously, it is necessary that df1
dy þ

df2
dx

� �
¼ 0, and hence

f1ðyÞ, f2ðxÞ are linear in their variables. Therefore they represent rigid-body rotation and can often be

discarded in Eq. (2.10).
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The plane strain general solution is written as
u ¼ 1þ m
E

4ð1
�

� mÞq1 �
o/
ox

�
;

v ¼ 1þ m
E

4ð1
�

� mÞq2 �
o/
oy

�
;

rxx ¼
o2/
oy2

; ryy ¼
o2/
ox2

; rxy ¼ � o2/
oxoy

:

ð2:12Þ
2.1. Fundamental solution for a concentrated load normal to the surface

The problem has been treated approximately by Gupta and Walowit (1974) when they investigated the

frictionless contact problem by using Fourier transform method. Here, in order to provide a basis for several

fundamental solutions of this problem in the following derivation, we develop full solutions in some detail.

In view of the symmetry of the normal load (Fig. 1) and the requirement that the substrate be stress-free at

large distances from the loading point, Airy stress functions for coating and substrate can be written as
/I ¼
Z 1

0

½ðA1 þ A2yÞe�wy þ ðA3 þ A4yÞewy � coswxdw; ð2:13Þ

/II ¼
Z 1

0

ðA5 þ A6yÞe�wy coswxdw; ð2:14Þ
where Ai are generally functions, as yet to be determined, of the dummy Fourier transform variable w;
superscripts I and II refer to the coating and substrate, respectively.

Using the procedure described in the previous section, the expressions for the auxiliary functions q1 and
q2 are obtained as follows:
qI1 ¼
1

2

Z 1

0

ðA4 e
wy � A2 e

�wyÞ sinwxdw;

qI2 ¼
1

2

Z 1

0

ðA4 e
wy þ A2 e

�wyÞ coswxdw;
ð2:15Þ
Coating 
E1,ν1

Q  

Substrate E2,ν2

y 

x  

P  

O

Fig. 1. Coating–substrate system subject to concentrated loads at origin.
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qII1 ¼ � 1

2

Z 1

0

A6 e
�wy sinwxdw;

qII2 ¼ 1

2

Z 1

0

A6 e
�wy coswxdw:

ð2:16Þ
Substituting Eqs. (2.13)–(2.16) into Eq. (2.12), the general solution for the elastic fields in the coating and

substrate is obtained.
The unknown functions AiðwÞ are now determined from the boundary conditions at the coating surface
rI
yy ¼ �dðxÞ;

rI
xy ¼ 0 ðy ¼ 0Þ

ð2:17Þ
and the continuity conditions of stresses and displacements along the interface
rI
yy ¼ rII

yy ;

rI
xy ¼ rII

xy ðy ¼ hÞ;
uI ¼ uII;
vI ¼ vII:

ð2:18Þ
Functions AiðwÞ contain the coating thickness h as a parameter, and also depend on the elastic bi-

material constants for the layer and substrate, given by Bi ¼ 4ð1þ miÞð1� miÞ=Ei, C ¼ C1 � C2,

Ci ¼ ð1þ miÞ=Ei, where 1 refers to the coating and 2 refers to the substrate (i ¼ 1; 2). The expressions for

functions AiðwÞ are given in Appendix A.

The stress and displacement fields for the coating and substrate can now be given in the following form:
dNI
1 ðx; yÞ ¼ uNI ¼ 1

2

Z 1

0

e�wyDNI
1

sinwx
w

dw;

dNI
2 ðx; yÞ ¼ vNI ¼ 1

2

Z 1

0

e�wyDNI
2

coswx
w

dw;

sNI
22 ðx; yÞ ¼ rNI

yy ¼ �
Z 1

0

e�wyðAN
1

�
þ AN

2 wyÞ þ ewyðAN
3 þ AN

4 wyÞ
	
coswxdw;

sNI
12 ðx; yÞ ¼ rNI

xy ¼
Z 1

0

e�wy ð1
�

� wyÞAN
2 � ðAN

1 � AN
3 e

2wyÞ þ AN
4 e

2wyð1þ wyÞ
	
sin xdw;

sNI
11 ðx; yÞ ¼ rNI

xx ¼
Z 1

0

e�wy ðAN
1

�
þ AN

3 e
2wyÞ þ AN

2 ðwy � 2Þ þ AN
4 e

2wyð2þ wyÞ
	
coswxdw;

ð2:19Þ
where
DNI
1 ¼ �AN

2 B1 þ 2AN
1 C1 þ 2AN

2 C1wy þ e2wyðAN
4 B1 þ 2AN

3 C1 þ 2AN
4 C1wyÞ;

DNI
2 ¼ AN

2 B1 þ 2AN
1 C1 þ 2AN

2 C1ðwy � 1Þ þ e2wy AN
4 B1

�
� 2AN

3 C1 � 2AN
4 C1ðwy þ 1Þ

	
:

dNII
1 ðx; yÞ ¼ uNII ¼ 1

2

Z 1

0

e�wy


� AN

6 B2 þ 2AN
5 C2 þ 2AN

6 C2wy
� sinwx

w
dw;

dNII
2 ðx; yÞ ¼ vNII ¼ 1

2

Z 1

0

e�wy 2AN
5 C2

�
þ AN

6 ðB2 þ 2C2ðwy � 1ÞÞ
	 coswx

w
dw;

sNII
22 ðx; yÞ ¼ rNII

yy ¼ �
Z 1

0

e�wyðAN
5 þ AN

6 wyÞ coswxdw;

sNII
12 ðx; yÞ ¼ rNII

xy ¼ �
Z 1

0

e�wy AN
5

�
þ AN

6 ðwy � 1Þ
	
sinwxdx;

sNII
11 ðx; yÞ ¼ rNII

xx ¼
Z 1

0

e�wy AN
5

�
þ AN

6 ðwy � 2Þ
	
coswxdw:

ð2:20Þ
Here, superscript N refers to normal load. Expressions for AN
i can be found in Appendix A.
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2.2. Fundamental solutions of a concentrated load tangential to the half-plane

Similarly to the argument of the previous section, in view of the anti-symmetry of the tangential load (see

Fig. 1) and the far-field stress-free condition of substrate, Airy stress functions for the coating and substrate
can be sought in the form:
F I ¼
Z 1

0

ðA1½ þ A2yÞe�wy þ ðA3 þ A4yÞewy � sinwxdw; ð2:21Þ

F II ¼
Z 1

0

ðA5 þ A6yÞe�wy sinwxdw; ð2:22Þ
where Ai are functions of w to be determined. Using the procedure of Section 2.1 gives
qI1 ¼
1

2

Z 1

0

ðA2 e
�wy � A4 e

wyÞ coswxdw;

qI2 ¼
1

2

Z 1

0

ðA2 e
�wy þ A4 e

wyÞ sinwxdw;
ð2:23Þ

qII1 ¼ 1

2

Z 1

0

A6 e
�wy coswxdw;

qII2 ¼ 1

2

Z 1

0

A6 e
�wy sinwxdw:

ð2:24Þ
Substituting Eqs. (2.21)–(2.24) into Eq. (2.12), the general solutions for the elastic fields of the coating

and substrate are obtained. The expressions are not written out explicitly here. From the boundary con-

ditions at the coating surface
rI
yy ¼ 0;

rI
xy ¼ �dðxÞ ðy ¼ 0Þ

ð2:25Þ
and the continuity conditions of stresses and displacements along the interface equation (2.17), the coeffi-

cients Ai can be specified, as given in Appendix A.
Inserting Eqs. (2.21)–(2.24) into Eq. (2.12), the stress–displacement fields of the coating and the substrate

are given. These so-called fundamental solutions for the stresses and displacements can be written as
dTI
1 ðx; yÞ ¼ uTI ¼ � 1

2

Z 1

0

e�wyDTI
1

coswx
w

dw;

dTI
2 ðx; yÞ ¼ vTI ¼ 1

2

Z 1

0

e�wyDTI
2

sinwx
w

dw;

sTI22ðx; yÞ ¼ rTI
yy ¼ �

Z 1

0

e�wyðAT
1

�
þ AT

2wyÞ þ ewyðAT
3 þ AT

4wyÞ
	
sinwxdw;

sTI12ðx; yÞ ¼ rTI
xy ¼ �

Z 1

0

e�wy AT
2 ð1

�
� wyÞ � ðAT

1 � AT
3 e

2wyÞ þ AT
4 e

2wyð1þ wyÞ
	
coswxdw;

sTI11ðx; yÞ ¼ rTI
xx ¼

Z 1

0

e�wy ðAT
1

�
þ AT

3 e
2wyÞ þ AT

2 ðwy � 2Þ þ AT
4 e

2wyð2þ wyÞ
	
sinwxdw;

ð2:26Þ
where
DTI
1 ¼ 2C1ðAT

1 þ AT
3 e

2wyÞ � AT
2 ðB1 � 2C1wyÞ þ AT

4 e
2wyðB1 þ 2C1wyÞ;
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DTI
2 ðx; yÞ ¼ 2C1ðAT

1 � AT
3 e

2wyÞ þ AT
2 ðB1 þ 2C1ðwy � 1ÞÞ þ AT

4 e
2wyðB1 � 2C1ðwy þ 1ÞÞ;

dTII
1 ðx; yÞ ¼ uTII ¼ 1

2

Z 1

0

e�wy AT
6B2



� 2AT

5C2 � 2AT
6C2wy

� coswx
w

dw;

dTII
2 ðx; yÞ ¼ vTII ¼ 1

2

Z 1

0

e�wy 2AT
5C2

�
þ AT

6 ðB2 þ 2C2ðwy � 1ÞÞ
	 sinwx

w
dw;

sTII22 ðx; yÞ ¼ rTII
yy ¼ �

Z 1

0

e�wyðAT
5 þ AT

6wyÞ sinwxdw;

sTII12 ðx; yÞ ¼ rTII
xy ¼

Z 1

0

e�wy AT
5

�
þ AT

6 ðwy � 1Þ
	
coswxdw;

sTII11 ðx; yÞ ¼ rTII
xx ¼

Z 1

0

e�wy AT
5

�
þ AT

6 ðwy � 2Þ
	
sinwxdw;

ð2:27Þ
here superscript T refers to the tangential load. The expressions for AT
i can be found in Appendix A.

If the coating material is identical to that of the substrate, or coating thickness approaches infinity,

solutions (2.19), (2.21), (2.26) and (2.27) reduce to the classical Flamant�s solutions (Hills et al., 1993;

Gladwell, 1980).
3. Formulation of singular integral equations of contact of coating–substrate system by fundamental solutions

(influence functions)

We now seek Green�s functions (GF) for the contact mechanics of coated systems, which provide

building blocks used to construct other solutions.

3.1. Influence functions

Putting y ¼ 0 in Eq. (2.19) the coating surface displacements are obtained as
uNI ¼ 1

2

Z 1

0

�
� AN

2 B1 þ 2AN
1 C1 þ AN

4 B1 þ 2AN
3 C1

	 sinwx
w

dw;

vNI ¼ 1

2

Z 1

0

AN
2 B1

�
þ 2AN

1 C1 � 2AN
2 C1 þ AN

4 B1 � 2AN
3 C1 � 2AN

4 C1

	 coswx
w

dw

ð3:1Þ
and their derivatives with respect to x as
ouNI

ox
¼ 1

2

Z 1

0

�
� AN

2 B1 þ 2AN
1 C1 þ AN

4 B1 þ 2AN
3 C1

	
coswxdw;

ovNI

ox
¼ 1

2

Z 1

0

�
� AN

2 B1 � 2AN
1 C1 þ 2AN

2 C1 � AN
4 B1 þ 2AN

3 C1 þ 2AN
4 C1

	
sinwxdw:

ð3:2Þ
By letting
1

2
2AN

1 C1

�
þ 2AN

3 C1 � AN
2 B1 þ AN

4 B1

	
¼ G1f1þ R1g;

1

2
2AN

2 C1

�
� 2AN

1 C1 þ 2AN
3 C1 þ 2AN

4 C1 � AN
2 B1 � AN

4 B1

	
¼ G2f1þ R2g;

ð3:3Þ
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where G2 ¼
2ðm2

1
�1Þ

E1p
, G1 ¼ ð1þm1Þð2m1�1Þ

E1p
, Eq. (3.2) can be rewritten as
ouNI

ox
¼ G1

Z 1

0

½1þ R1ðhwÞ� coswxdw ¼ G1 pdðxÞ
�

þ
Z 1

0

R1ðhwÞ coswxdx
�
;

ovNI

ox
¼ G2

Z 1

0

½1þ R2ðhwÞ� sinwxdw ¼ G2

1

x

�
þ
Z 1

0

R2ðhwÞ sinwxdw
�
;

ð3:4Þ
where the relations
dðxÞ ¼ 1

p

Z 1

0

coswxdw;
1

x
¼

Z 1

0

sinwxdw ð3:5Þ
are used, and
R1ðW Þ ¼ R11ðW Þ
R12ðW Þ � 1;

R11ðW Þ ¼ R111ðW Þ þ R112ðW Þ;

R111ðW Þ ¼ �ðB1 � 2C1ÞðB2 þ CÞðB1 � CÞ � ðB1 � 2C1ÞCðB1 � B2 � CÞe�4W ;

R112ðW Þ ¼ e�2W 2ðB1

�
� 2B2 � 2C1ÞðB1 � C1ÞC1 þ 2C2ðB1B2 þ 4B1C1 � 2B2C1 � 4C2

1

� B1C2 þ 2C1C2Þ þ 8C1CðB2 þ CÞW 2


;

R12ðW Þ ¼ 2G1p ðB2

�
þ CÞðB1 � CÞ þ CðB1 � B2 � CÞe�4W

þ e�2W B1ðB1

�
� B2 � 2CÞ þ 2CðB2 þ CÞð1þ 2W 2Þ

	

;

R2ðW Þ ¼ �1� B1ðB1 � CÞðB2 þ CÞ � B1ðB1 � B2 � CÞC e�4W � 4B1C e�2W ðB2 þ CÞW
2G2p ðB1 � CÞðB2 þ CÞ þ ðB1 � B2 � CÞC e�4W þ e�2W B2

1 � B1ðB2 þ 2CÞ þ 2CðB2 þ CÞð1þ 2W 2Þ½ �f g
where W ¼ wh.
Eqs. (3.4) are Green�s functions, or influence functions due to the normal unity load.

Similarly, putting y ¼ 0 in Eq. (2.26) one obtains the coating surface displacements as
uTI ¼ � 1

2

Z 1

0

2C1ðAT
1

�
þ AT

3 Þ � AT
2B1 þ AT

4B1

	 coswx
w

dw;

vTI ¼ 1

2

Z 1

0

2C1ðAT
1

�
� AT

3 Þ þ AT
2 ðB1 � 2C1Þ þ AT

4 ðB1 � 2C1Þ
	 sinwx

w
dw

ð3:6Þ
and their divertive with respect to x as
ouTI

ox
¼ 1

2

Z 1

0

2C1ðAT
1

�
þ AT

3 Þ � AT
2B1 þ AT

4B1

	
sinwxdw;

ovTI

ox
¼ 1

2

Z 1

0

2C1ðAT
1

�
� AT

3 Þ þ ðAT
2 þ AT

4 ÞðB1 � 2C1Þ
	
coswxdw:

ð3:7Þ
As in the previous derivation, let
1

2

�
� AT

2B1 þ 2AT
1C1 þ AT

4B1 þ 2AT
3C1

	
¼ G3ð1þ R3Þ;

1

2
AT
2B1

�
þ 2AT

1C1 � 2AT
2C1 þ AT

4B1 � 2AT
3C1 � 2AT

4C1

	
¼ G4ð1þ R4Þ;

ð3:8Þ
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where G3 ¼ G2, G4 ¼ �G1. Then Eq. (3.7) is transformed into
ouTI

ox
¼ G3

Z 1

0

½1þ R3ðhwÞ� sinwxdw ¼ G3

1

x

�
þ
Z 1

0

R3ðhwÞ sinwxdw
�
;

ovTI

ox
¼ G4

Z 1

0

½1þ R4ðhwÞ� coswxdw ¼ G4 pdðxÞ
�

þ
Z 1

0

R4ðhwÞ coswxdw
�
;

ð3:9Þ
where
R3ðW Þ ¼ �1� B1ðB1 � CÞðB2 þ CÞ � B1ðB1 � B2 � CÞC e�4W þ 4B1C e�2W ðB2 þ CÞW
2G3p ðB1 � CÞðB2 þ CÞ þ ðB1 � B2 � CÞC e�4W þ e�2W B2

1 � B1ðB2 þ 2CÞ þ 2CðB2 þ CÞð1þ 2W 2Þ½ �f g

and
R4ðW Þ ¼ �1þ R41ðW Þ
2pG4R42ðW Þ ;

R41ðW Þ ¼ R411ðW Þ þ R412ðW Þ;

R411ðW Þ ¼ ðB1 � 2C1ÞðB1 � CÞðB2 þ CÞ þ ðB1 � 2C1ÞðB1 � B2 � CÞC e�4W ;

R412ðW Þ ¼ �2e�2W B2
1C1

�
� B1½B2ðC1 þ CÞ þ Cð2C1 þ CÞ� þ 2C1CðB2 þ CÞð1þ 2W 2Þ



;

R42ðW Þ ¼ R421ðW Þ þ R422ðW Þ;

R421ðW Þ ¼ ðB1 � CÞðB2 þ CÞ þ ðB1 � B2 � CÞC e�4W ;

R422ðW Þ ¼ e�2W B2
1

�
� B1ðB2 þ 2CÞ þ 2CðB2 þ CÞð1þ 2W 2Þ

	
:

Eqs. (3.9) are Green�s functions or influence functions due to the tangential unity load. It must be noted

that limW!1 RiðW Þ ¼ 0 ði ¼ 1–4Þ.

3.2. Formulation of fundamental integral equations for contact of coated system

Using Eqs. (3.4) and (3.9), the displacement derivatives of coating surface loaded by a distribution of
frictions can be written by the Green�s function method as follows:
ou1ðxÞ
ox

¼
Z

ouNIðx� tÞ
ot

pðtÞdt þ
Z

ouTIðx� tÞ
ot

qðtÞdt;

ov1ðxÞ
ox

¼
Z

ovNIðx� tÞ
ot

pðtÞdt þ
Z

ovTIðx� tÞ
ot

qðtÞdt;
ð3:10Þ
where pðtÞ and qðtÞ are, respectively, unknown continuous normal and tangential tractions, and u1, v1 are
normal and tangential displacements of coating surface due to combination loads of pðtÞ and qðtÞ, and t is
the dummy integration variable whose range of variation is the contact zone.

Inserting (3.4) and (3.9) into (3.10) leads to
ou1ðxÞ
ox

¼
Z

G1 pdðx
�

� tÞ þ
Z 1

0

R1ðhwÞ coswðx� tÞdx
�
pðtÞdt

þ
Z

G3

1

x� t

�
þ
Z 1

0

R3ðhwÞ sinwðx� tÞdw
�
qðtÞdt;

ov1ðxÞ
ox

¼
Z

G2

1

x� t

�
þ
Z 1

0

R2ðhwÞ sinwðx� tÞdw
�
pðtÞdt

þ
Z

G4 pdðx
�

� tÞ þ
Z 1

0

R4ðhwÞ coswðx� tÞdw
�
qðtÞdt

ð3:11Þ
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or
ou1ðxÞ
ox

¼ G1ppðxÞ þ G2

Z
qðtÞ
x� t

dt þ
Z

G1

Z 1

0

R1ðhwÞ coswðx
�

� tÞdt
�
pðtÞdt

þ
Z

G2

Z 1

0

R3ðhwÞ sinwðx
�

� tÞdw
�
qðtÞdt;

ov1ðxÞ
ox

¼ G2

Z
pðtÞ
x� t

dt � G1pqðxÞ þ G2

Z Z 1

0

R2ðhwÞ sinwðx
�

� tÞdw
�
pðtÞdt

� G1

Z Z 1

0

R4ðhwÞ coswðx
�

� tÞdw
�
qðtÞdt

ð3:12Þ
by virtue of G3 ¼ G2, G4 ¼ �G1.

Now, let us turn to the surface deformation of an elastic indenter. Consider the uncoated case first,

which can be easily obtained by setting the materials of coating and substrate to be identical in (3.12) and

denoting Poisson�s ratio and Young�s modulus of the indenter by m3 and E3. Consequently, the deformation

of an elastic indenter can be presented as
ou3ðxÞ
ox

¼ G5ppðxÞ þ G6

Z
qðtÞ
x� t

dt;

ov3ðxÞ
ox

¼ G6

Z
pðtÞ
x� t

dt � G5pqðxÞ;
ð3:13Þ
where G5 ¼ ð1þm3Þð2m3�1Þ
E3p

, G6 ¼
2ðm2

3
�1Þ

E3p
.

In the coordinates of coating and substrate as shown in Fig. 2, Eq. (3.13) in the global coordinates

should be rewritten as
ou3ðxÞ
ox

¼ G5ppðxÞ � G6

Z
qðtÞ
x� t

dt;

ov3ðxÞ
ox

¼ �G6

Z
pðtÞ
x� t

dt � G5pqðxÞ:
ð3:14Þ
Substrate E2,ν2  

Coating E1,ν1

Thickness=h  

 

y 

x  

Indenter  E3,ν3

2a  

R  

P  
Q  

Fig. 2. Contact of two gently curved bodies.
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Following Hertz, it will be assumed that the contact width is small compared with the radii of the

curvature of the contacting bodies. Thus, each may be replaced by a half-plane, and the value of the relative

displacements gx ¼ u1 � u3, gy ¼ v1 � v3 can be expressed as
ogxðxÞ
ox

¼ ðG1 � G5ÞppðxÞ þ ðG2 þ G6Þ
Z

qðtÞ
x� t

dt þ
Z

G1

Z 1

0

R1ðhwÞ coswðx
�

� tÞdt
�
pðtÞdt

þ
Z

G2

Z 1

0

R3ðhwÞ sinwðx
�

� tÞdw
�
qðtÞdt;

ogyðxÞ
ox

¼ ðG2 þ G6Þ
Z

pðtÞ
x� t

dt � ðG1 � G5ÞpqðxÞ þ G2

Z Z 1

0

R2ðhwÞ sinwðx
�

� tÞdw
�
pðtÞdt

� G1

Z Z 1

0

R4ðhwÞ coswðx
�

� tÞdw
�
qðtÞdt;

ð3:15Þ
which also can be re-expressed in a standard form as
1

A
ogxðxÞ
ox

¼ bpðxÞ þ 1

p

Z
qðtÞ
x� t

dt þ b1

1

p

Z Z 1

0

R1ðhwÞ coswðx
�

� tÞdw
�
pðtÞdt

þ b2

1

p

Z Z 1

0

R3ðhwÞ sinwðx
�

� tÞdw
�
qðtÞdt;

1

A
ogyðxÞ
ox

¼ 1

p

Z
pðtÞ
x� t

dt � bqðxÞ þ b2

1

p

Z Z 1

0

R2ðhwÞ sinwðx
�

� tÞdw
�
pðtÞdt

� b1

1

p

Z Z 1

0

R4ðhwÞ coswðx
�

� tÞdw
�
qðtÞdt;

ð3:16Þ
where
A ¼ 2ðm21 � 1Þ
E1

þ 2ðm23 � 1Þ
E3

; b ¼ ð1þ m1Þð2m1 � 1Þ=E1 � ð1þ m3Þð2m3 � 1Þ=E3

2ðm21 � 1Þ=E1 þ 2ðm23 � 1Þ=E3

;

b1 ¼
1

A
ð1þ m1Þð2m1 � 1Þ

E1

; b2 ¼
1

A
2ðm21 � 1Þ

E1

:

Eqs. (3.16) are the fundamental equations for the contact between an elastic indenter and a coated system. It is

understood that the integrals are carried out over the entire contact zone in each case. Clearly, the normal

traction and tangential traction are coupled in Eq. (3.16). Only if all materials of coating, substrate and in-

denter are identical, then Eq. (3.16) can be decoupled. This is different from the contact situation in the

uncoated problem. In the uncoated case, when the substrate material is identical to the indenter material, the

contact equations are decoupled. In addition, we ensure equilibriumwith the external forces P ,Q by requiring
P ¼
Z

pðtÞdt; ð3:17Þ

Q ¼
Z

qðtÞdt: ð3:18Þ
4. Special cases of contact of coating–substrate system

From the fundamental equations (3.16), a series of special cases of the governing equations can be
obtained by selecting appropriate material parameters. Below, we present some frequently encountered
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cases. Some of them correspond to practical contact situations studied by other models and methods, such

as the FEM (Tian and Saka, 1991; Anderson and Collins, 1995), BIM (Gupta and Walowit, 1974; Els-

harkawy, 1999) and a hybrid method (Bentall and Johnson, 1986; Nowell and Hills, 1988).

4.1. Rigid indenter

When the indenter is rigid, Eq. (3.16) can be written into the form
1

A
ogxðxÞ
ox

¼ bpðxÞ þ 1

p

Z
qðtÞ
x� t

dt þ b
p

Z Z 1

0

R1ðhwÞ coswðx
�

� tÞdt
�
pðtÞdt

þ 1

p

Z Z 1

0

R3ðhwÞ sinwðx
�

� tÞdw
�
qðtÞdt;

1

A
ogyðxÞ
ox

¼ 1

p

Z
pðtÞ
x� t

dt � bqðxÞ þ 1

p

Z Z 1

0

R2ðhwÞ sinwðx
�

� tÞdw
�
pðtÞdt

� b
p

Z Z 1

0

R4ðhwÞ coswðx
�

� tÞdw
�
qðtÞdt

ð4:1Þ
with A ¼ 2ðm2
1
�1Þ

E1
, b ¼ ð1�2m1Þ

2ð1�m1Þ
. Here, it should be pointed out that the conditions of validity of Eq. (4.1) are less

strict than those for Eq. (3.16): the radius of curvature of the coating surface must be much larger than the

contact width, but there is no restriction for curvature of the rigid indenter. This case can be often used

when indenter is much stiffer than coating. Numerical solution of Eq. (4.1), particularly when partial slip

occurs, requires introducing some assumptions, e.g. Amontons (or Coulomb) friction law, or the Goodman

assumption, similarly to the uncoated case (Hills et al., 1993).

4.2. Fully sliding frictional case

Considering the relative displacement of the contact surfaces in tangential direction, contact problems

can be classified into three cases:

• The full stick problem: once a point at the surface of indenter comes into contact with a corresponding

coating surface point, their relative displacement in the tangential direction is fixed at a constant value

during subsequent increase of the contact load.

• Partial slip: during increase of external loading at some points on the contact surface shear tractions
reach a limiting value, and slip (change in the relative displacement of contacting points) takes place.

• Full slip: the entire contact surface is under sliding conditions.

In practice, full stick seldom happens in the case of incomplete contacts. Partial slip problem presents a

numerically complex problem even for the uncoated case (Nowell and Hills, 1988), and is even more dif-

ficult in the coated case. In this paper we consider the case of full slip of a frictional contact. We assume that

the relation qðtÞ ¼ fpðtÞ holds everywhere, where f is the friction coefficient. Eq. (3.16) then can be reduced

to a single Fredholm integral equation of the second kind as
1

A
ogyðxÞ
ox

¼ 1

p

Z
pðtÞ
x� t

dt � fbpðxÞ þ b2

p

Z Z 1

0

R2ðhwÞ sinwðx
�

� tÞdw
�
pðtÞdt

� fb1

p

Z Z 1

0

R4ðhwÞ coswðx
�

� tÞdw
�
pðtÞdt: ð4:2Þ
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Moreover, if the indenter is rigid, Eq. (4.2) can be simplified to
1

A
ogyðxÞ
ox

¼ �bfpðxÞ þ 1

p

Z
pðtÞ
x� t

dt þ 1

p

Z
kðx; tÞpðtÞdt; ð4:3Þ
where
kðx; tÞ ¼
Z 1

0

½R2ðhwÞ sinwðx� tÞ � fbR4ðhwÞ coswðx� tÞ�dw:
A set of powerful methods have been proposed to solve this kind of singular Fredholm integral (Erdogan

et al., 1973; Ma and Korsunsky, 2002).
4.3. Frictionless case

If the friction coefficient is equal to zero, Eq. (4.2) reduces to the Fredholm integral equation of the first
kind
1

A
ogyðxÞ
ox

¼ 1

p

Z
pðtÞ
x� t

dt þ b2

1

p

Z Z 1

0

R2ðhwÞ sinwðx
�

� tÞdw
�
pðtÞdt: ð4:4Þ
Furthermore, if the indenter is rigid, Eq. (4.4) degenerates to
1

A
ogyðxÞ
ox

¼ 1

p

Z
pðtÞ
x� t

dt þ 1

p

Z Z 1

0

R2ðhwÞ sinwðx
�

� tÞdw
�
pðtÞdt: ð4:5Þ
In the literature, frictionless cases have been investigated by many authors (Gupta and Walowit, 1974;

and others).
4.4. Thin coating

When the coating material is identical to substrate material, or the thickness of coating h ! 1, Eqs.
(3.16) reduce to the equations for the uncoated system obtained by Hills et al. (1993) (Eqs. (2.17) and

(2.22)).
1

A
ogxðxÞ
ox

¼ bpðxÞ þ 1

p

Z
qðtÞ
x� t

dt;

1

A
ogyðxÞ
ox

¼ 1

p

Z
pðtÞ
x� t

dt � bqðxÞ;
ð4:6Þ
where A ¼ 2ðm2
1
�1Þ

E1
þ 2ðm2

3
�1Þ

E3
, b ¼ ð1þm1Þð2m1�1Þ=E1�ð1þm3Þð2m3�1Þ=E3

2ðm2
1
�1Þ=E1þ2ðm2

3
�1Þ=E3

.

Sometimes, attention is focused on the larger deformation along the coating. It is possible to assume

approximately that both substrate and indenter are rigid. The full slip contact equation can be reduced to

the Fredholm singular integral of the second kind:
1

A
ogyðxÞ
ox

¼ 1

p

Z
pðtÞ
x� t

dt � bfqðxÞ þ 1

p

Z Z 1

0

R2ðhwÞ sinwðx
�

� tÞdw
�
pðtÞdt

� fb
p

Z Z 1

0

R4ðhwÞ coswðx
�

� tÞdw
�
qðtÞdt; ð4:7Þ
where A ¼ 2ðm2
1
�1Þ

E1
, b ¼ ð1�2m1Þ

2ð1�m1Þ
, and
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R2ðW Þ ¼ �1� B1ðB1 � C1ÞC1ð1� e�4W Þ � 4B1C2
1 e

�2W W
2G2p ðB1 � C1ÞC1ð1þ e�4W Þ þ e�2W B2

1 � 2C1B1 þ 2C2
1ð1þ 2W 2Þ½ �f g ;
R4ðW Þ ¼ �1þ
ðB1 � 2C1ÞðB1 � C1ÞC1ð1þ e�4W Þ � 2e�2W B2

1C1 � 3C2
1B1 þ 2C3

1ð1þ 2W 2Þ
� 	

2pG4 ðB1 � C1ÞC1ð1þ e�4W Þ þ e�2W B2
1 � 2C1B1 þ 2C2

1ð1þ 2W 2Þ½ �f g :
5. Stress and displacement fields in coating and substrate

Unknown traction distributions pðxÞ and qðxÞ must be solved by some suitable numerical methods for

the inversion of singular integral equations (e.g., Erdogan et al., 1973; Ma and Korsunsky, 2002). If pðxÞ
and qðxÞ in Sections 3 and 4 are found, then stress and displacement fields in the coating and substrate

obtain respectively as follows:

Coating:
dI
i ðx; yÞ ¼

Z
dNI
i ðx

�
� t; yÞpðtÞ þ dTI

i ðx� t; yÞqðtÞ
	
dt;

sIijðx; yÞ ¼
Z

sNI
ij ðx

h
� t; yÞpðtÞ þ sTIij ðx� t; yÞqðtÞ

i
dt:

ð5:1Þ
Substrate:
dII
i ðx; yÞ ¼

Z
dNII
i ðx

�
� t; yÞpðtÞ þ dTII

i ðx� t; yÞqðtÞ
	
dt;

sIIij ðx; yÞ ¼
Z

sNII
ij ðx

h
� t; yÞpðtÞ þ sTIIij ðx� t; yÞqðtÞ

i
dt;

ð5:2Þ
where dNI
i ðx; yÞ, dNII

i ðx; yÞ, sNI
ij ðx; yÞ, sNII

ij ðx; yÞ, dTI
i ðx; yÞ, dTII

i ðx; yÞ, sTIij ðx; yÞ and sTIIij ðx; yÞ are, respectively, the
displacement and stress kernel functions that can be found in Eqs. (2.19), (2.21), (2.26) and (2.27).
6. Numerical example

Consider the problem of a rigid cylindrical punch, sliding on a coated elastic half-plane as shown in Fig.

2. The problem can be expressed by Eq. (4.3) and solved using the Erdogan method (Erdogan et al., 1973).

Without wishing to discuss the details of the numerical implementation we focus here on the variation of

the traction distribution along the coating surface due to the introduction of the coating and further with

the change in the friction coefficient.
The elastic parameters of the softer coating and the stiffer substrate are as follows:

Indenter: rigid, indenter radius: R ¼ 5:0� 10�3 m.

Substrate: E2 ¼ 1:15� 1011 Pa, m2 ¼ 0:33.
Coating: E1 ¼ E2=2, m1 ¼ 0:33, coating thickness: h ¼ 2� 10�5 m.

Normal load: P ¼ 15,000 N/m.

Fig. 3 shows the traction profiles along the contact. Further numerical results for the eccentricity and
extent of contact are given in Table 1.
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Fig. 3. Normal traction vs. friction coefficient for a rigid Hertzian indenter sliding over a coated half-plane under normal load P ¼ 15

kN/m.

Table 1

Variation of contact parameters with the friction coefficient for a rigid Hertzian indenter sliding over a coated half-plane under normal

load P ¼ 15 kN/m

Friction coefficient, f Contact half width, a (lm) Eccentricity parameter, e (lm) Thickness parameter ðh=aÞ
Case 1: f ¼ 0:0 (uncoated) 27.20 0.0 0.0

Case 2: f ¼ 0:0 33.10 0.0 0.6

Case 3: f ¼ 0:2 33.13 2.6 0.6

Case 4: f ¼ 0:5 33.26 6.6 0.6

Case 5: f ¼ 0:8 33.49 10.6 0.6
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Numerical results for the pressure distribution for the uncoated case are in perfect agreement with the
Hertzian formula for the semi width of a two-dimensional contact between a rigid cylindrical punch and an

elastic half-plane:
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4PRð1� m2Þ

pE

r
: ð6:1Þ
In the case of uncoated substrate the above formula gives the value of 27.20 lm, as in Table 1. If, on the

other hand, a semi-infinite solid with the elastic properties of the coating were considered, the result would

be 38.47 lm. The numerical results obtained for the coated substrate are expected to lie between these two

extremes, as confirmed in Table 1.
Compared with the normal traction distribution of the Hertzian contact (i.e., uncoated, frictionless

contact, Case 1 in Fig. 3), the tractions for the coated contact are reduced due to the increased extent of the
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contact. With increasing coefficient of friction the contact semi-width increases, as does the eccentricity.

The phenomena associated with the change in the extent of contact are relatively mild in the Hertzian case.

However, they are likely to be much more significant in other cases, e.g. that of flat-and-rounded contacts,

where significant increase of the normal traction towards the edge of contact is observed. These effects will
be treated separately.
7. Concluding remarks

Fundamental solutions for the concentrated normal and tangential forces acting at the surface of a

coated half-plane have been obtained.

On the basis of the fundamental solutions for concentrated forces, singular integral equation formula-
tion has been developed for the unknown traction distributions, for the general case of frictional contact

between an elastic punch and a coated substrate. This is a general basic framework for the analysis of

contact of coated system.

Some special integral equation formulations have been derived corresponding to some typical cases of

contacts of coated systems, which are often encountered in practical situations.

Subsequently, full displacement and stress fields of coated system due to arbitrary surface tractions have

been derived by Green�s function method and presented in simple forms.

Finally, a typical example is considered and the numerical solution given to support the validity of the
fundamental equations deduced in this paper.

The conclusions obtained in this paper apply to the contact of a system coated by single layer. For the

contact of multi-coated system fundamental solutions can be re-derived using the general procedures given

in this paper.
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Appendix A

A.1. Ai and AN
i due to concentrated normal load
A1 ¼
AN
1

w2

¼
2B1B2 þ 2ðB1 � B2 � CÞC þ e�2hw B2

1 � B1B2 � 2ðB1 � B2 � CÞC þ 4CðB2 þ CÞhwðhw� 1Þ
� 	

2pw2D
;

A2 ¼
AN
2

w
¼ �ðC � B1ÞðB2 þ CÞ þ ðB2 þ CÞe�2hwCð2hw� 1Þ

pwD
;

A3 ¼
AN
3

2
¼

2ðB1 � B2 � CÞC e�4hw þ e�2hw B2
1 � B1B2 � 2ðB1 � B2 � CÞC þ 4CðB2 þ CÞhwðhwþ 1Þ

� 	
2

;

w 2pw D
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A4 ¼
AN
4

w
¼ �ðB1 � B2 � CÞC e�4hw þ e�2hwCðB2 þ CÞð1þ 2hwÞ

pwD
;

A5 ¼
AN
5

w2
¼ �B1 � B1 � B2 þ 2ðB1 � B2 � 2CÞhw½ � þ B1 e

�2hw � B1 þ B2 þ 4Chwð1� hwÞ½ �
2pw2D

;

A6 ¼
AN
6

w
¼ B1ðB1 � CÞ þ B1 e

�2hwCð1� 2hwÞ
pwD

;

D ¼ B1B2



þ ðB1 � B2 � CÞCð1þ e�4hwÞ þ e�2hw B2

1

�
� B1B2 � 2ðB1 � B2 � CÞC þ 4CðB2 þ CÞh2w2

	�
:

A.2. Ai and AN
i due to concentrated tangential load
A1 ¼
AT
1

w2
¼ � e�2hw B1ðB1 � B2 � 2CÞ þ 4CðB2 þ CÞh2w2½ �

2pw2D
;

A2 ¼
AT
2

w
¼ �ðC � B1ÞðB2 þ CÞ � ðB2 þ CÞe�2hwCð1þ 2hwÞ

pwD
;

A3 ¼
AT
3

w2
¼ e�2hw B1ðB1 � B2 � 2CÞ þ 4CðB2 þ CÞh2w2½ �

2pw2D
;

A4 ¼
AT
4

w
¼ CðB1 � B2 � CÞe�4hw þ e�2hwCðB2 þ CÞð1� 2hwÞ

pwD
;

A5 ¼
AT
5

w2
¼ �B1ðB1 � B2 � 2CÞð2hw� 1Þ þ B1e

�2hw B1 � B2 � 2C þ 4Ch2w2½ �
2pw2D

;

A6 ¼
AT
6

w
¼ B1ðB1 � CÞ þ B1 e

�2hwCð1þ 2hwÞ
pwD

;

D ¼ B1B2



þ ðB1 � B2 � CÞCð1þ e�4hwÞ þ e�2hw B2

1

�
� B1B2 � 2ðB1 � B2 � CÞC þ 4CðB2 þ CÞh2w2

	�
:
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